Exercise 40

Find the distance to the point $(6,1,0)$ from the plane through the origin that is perpendicular to $\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

Solution

The equation for a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0,
$$

where \mathbf{n} is a normal vector and \mathbf{r}_{0} is the position vector for any point lying in the plane. The normal vector is $(1,-2,1)$, and since the plane passes through the origin, $\mathbf{r}_{0}=(0,0,0)$.

$$
\begin{gathered}
(1,-2,1) \cdot(x-0, y-0, z-0)=0 \\
1(x-0)-2(y-0)+1(z-0)=0 \\
x-2 y+z=0
\end{gathered}
$$

Now that the equation for the plane is known, we can determine the desired distance. An equation for the line with direction vector $(1,-2,1)$ that passes through $(6,1,0)$ is

$$
\begin{aligned}
\mathbf{y}(t) & =(1,-2,1) t+(6,1,0) \\
& =(t,-2 t, t)+(6,1,0) \\
& =(t+6,-2 t+1, t) .
\end{aligned}
$$

Substitute $x=t+6, y=-2 t+1$, and $z=t$ into the equation for the plane and solve for t to find when the line intersects the plane.

$$
(t+6)-2(-2 t+1)+(t)=0 \quad \rightarrow \quad t=-\frac{2}{3}
$$

The point at which the line intersects the plane is then

$$
\mathbf{y}\left(-\frac{2}{3}\right)=\left(\frac{-2}{3}+6,-2 \frac{-2}{3}+1, \frac{-2}{3}\right)=\left(\frac{16}{3}, \frac{7}{3},-\frac{2}{3}\right) .
$$

Therefore, the perpendicular distance from $(6,1,0)$ to the plane is

$$
d=\sqrt{\left(6-\frac{16}{3}\right)^{2}+\left(1-\frac{7}{3}\right)^{2}+\left(0+\frac{2}{3}\right)^{2}}=2 \sqrt{\frac{2}{3}} .
$$

